
Point Reprojection and Dynamic Scenes

Erik Reinhard1

April 24, 2001

1University of Utah

Contents

1 Introduction 2

2 Point reprojection 3
2.1 Render cache algorithm . 4
2.2 Parallel render cache . 5
2.3 Implementation details . 8
2.4 Scalability measures . 8
2.5 Results . 9

2.5.1 Parallel render cache evaluation 9
2.5.2 Task size . 11
2.5.3 Comparison with other speed-up mechanisms 12

2.6 Discussion . 14

3 Animation 16
3.1 Algorithm . 17
3.2 Results . 20

3.2.1 Traversal performance - static scenes 21
3.2.2 Object update rate - dynamic scenes 22
3.2.3 Traversal cost - dynamic scenes 22
3.2.4 Animating clusters of objects 23

3.3 Discussion . 24

4 Summary and discussion 26

A Dynamic Acceleration Structures for Interactive Ray Tracing 29
A.1 Introduction . 29
A.2 Acceleration Structures for Ray Tracing 30
A.3 Grids . 31
A.4 Hierarchical grids . 32
A.5 Evaluation . 34
A.6 Conclusions . 36

1

1 Introduction

Given the feasibility of interactive ray tracing, the following chapters deal with algo-
rithms that allow higher scene complexity and/or larger image sizes, as well as algo-
rithms that enable interactive manipulation of scene geometry.

In the following chapter, a high-level optimization is presented for increasing image
resolution and scene complexity. This approach implements techniques that allow re-
sults from previous frames to be reused. There are a number of techniques in existence
that can be employed. Reusing previous results involves displaying pixels at a higher
frame-rate than new samples can be produced. Storing pixels in a 3D point cloud and
reprojecting the points for each new frame is one such method. Several choices need
to be made to optimize such reprojection techniques, including strategies to decide
which pixels to render for the next frame, whether frame-based rendering is going to
be used in the first place or whether the algorithm is to operate in asynchronous mode
(frameless rendering). Also, the point reprojection may operate in parallel or serially
by a single front-end processor. Chapter 2 presents an implementation and discusses
its merits and weaknesses.

A second wish users may have once they’ve implemented an interactive ray tracer,
is extending interactive ray tracing to allow dynamic scenes. Walking through a scene
at interactive rates is useful, but being able to interact with it is even more useful. While
ray tracing is traditionally good at rendering static scenes, we show that it is possible
to render animated scenes, or even interact with the scene in real-time. This requires
some basic modifications to the ray tracing algorithm (in particular the spatial subdivi-
sions need a tweak) that are easy to implement, incur a small performance penalty, but
allow animation to take place interactively and give the user the ability to manipulate
objects. Chapter 3 shows the details, while Appendix A contains an original paper on
this subject.

2

2 Point reprojection

Interactive Whitted-style ray tracing has recently become feasible on high-end paral-
lel machines [14, 17]. However, such systems only maintain interactivity for relatively
simple scenes or small image sizes, due to the brute-force nature of these approaches.
While keeping the algorithm as simple as possible is an important factor for their suc-
ces, reasonably straightforward extensions have been deviced to improve visual ap-
pearance for much larger image sizes and scene complexities. After a brief overview,
one such system is explored further in this chapter.

By reusing samples instead of relying on brute force approaches, the limitations in
scene complexity and image size can be overcome. There are several ways to reuse
samples. All of them require interpolating between existing samples as the key part of
the process. First, rays can be stored along with the color seen along them. The color
of new rays can be interpolated from existing rays [3, 12]. Alternatively, the points in
3D where rays strike surfaces can be stored and then woven together as displayable
surfaces [21]. This method was designed to display course results by a display pro-
cessor while new samples are created by a rendering back-end which can consist of
one or more renderers. As new results become available to the display processor, the
image is refined and redisplayed. Finally, stored points can be directly projected to the
screen, and holes can be filled in using image processing heuristics [25]. All techiques
that re-use samples rely on the fact that the reprojection step is much cheaper than
the generation of new samples and are therefore typically employed in cases where
sample generation is too slow for creating interactive results. In the case of Simmons’
work, this occurred because the lighting simulation is too complex for interactive dis-
play [21]. Walter’s point reprojection algorithm is directed towards interactive display
of scenes that are too complex to display interactively otherwise.

Another method to increase the interactivity of ray tracing is frameless render-
ing [4, 6, 17, 27]. Here, a master processor farms out single pixel tasks to be traced
by the slave processors. The order in which pixels are selected is random or quasi-
random. Whenever a renderer finishes tracing its pixel, it is displayed directly. As pixel
updates are independent of their display, there is no concept of frames. During cam-
era movements, the display will deteriorate somewhat, which is visually preferable to
slow frame-rates in frame-based rendering approaches. It can therefore handle scenes
of higher complexity than brute force ray tracing, although no samples are reused.

The main thrust of this chapter is the use of parallelism to increase data reuse and
thereby increase allowable scene complexity and image size without affecting per-
ceived update rates. The remainder of this chapter uses the render cache of Walter

3

project points

process image

cache of
colored 3D

points

request samples

display

front end CPU

many CPUs
for tracing
rays

rays

new points

loop

Figure 2.1: The serial render cache algorithm [25].

et al. [25] and applies to it the concept of frameless rendering. By distributing this
algorithm over many processors we are able to overcome the key bottleneck in the
original render cache work. We demonstrate our system on a variety of scenes and
image sizes that have been out of reach for previous systems. The work described in
this chapter is currently under submission for the IEEE 2001 Symposium on Parallel
and Large-Data Visualization and Graphics [19].

2.1 Render cache algorithm

The basic idea of the render cache is to save samples in a 3D point cloud, and reproject
them when viewing parameters change [25]. New samples are requested all over the
screen, with most samples concentrated near depth discontinuities. As new samples
are added old samples are eliminated from the point cloud.

The basic process is illustrated in Figure 2.1. The front-end CPU handles all tasks
other than tracing rays. Its key data structure is the cache of colored 3D points. The
front end continuously loops, first projecting all points in the cache into screen space.
This will produce an image with many holes, and the image is processed to fill these
holes in. This filling-in process uses sample depths and heuristics to make the pro-
cessed image look reasonable. The processed image is then displayed on the screen.
Finally, the image is examined to find “good” rays to request to improve future images.
These new rays are traced by the many CPUs in the “rendering farm”. The current
frame is completed after the front end receives the results and inserts them into the
point cloud.

From a parallel processing point of view, the render cache has the disadvantage of a
single expensive display process that needs to feed a number of renderers with sample
requests and is also responsible for point reprojection. The display process needs to
insert new results into the point cloud, which means that the more renderers are used,
the heavier the workload of the display process. Hence, the display process quickly

4

becomes a bottleneck. In addition, the number of points in the point cloud is linear in
image size, which means that the reprojection cost is linear in image size.

The render cache was shown to work well on 256x256 images using an SGI Origin
2000 with 250MHz R10k processors. At higher resolutions than 256x256, the front
end has too many pixels to reproject to maintain fluidity.

2.2 Parallel render cache

Ray tracing is an irregular problem, which means that the time to compute a ray task
can vary substantially depending on depth complexity. For this reason it is undesirable
to run a parallel ray tracing algorithm synchronously, as this would slow down render-
ing of each frame to be as slow as the processor which has the most expensive set of
tasks. On the other hand, synchronous operation would allow a parallel implementation
of the render cache to produce exactly the same artifacts as the original render cache.
We have chosen responsiveness and speed of operation over minimization of artifacts
by allowing each processor to update the image asynchronously.

Our approach is to distribute the render cache functionality with the key goal of not
introducing synchronization, which is analogous to frameless rendering. In our system
there will be a number of renderers which will reproject point clouds and render new
pixels, thereby removing the bottleneck from the original render cache implementation.
Scalability is therefore assured.

We parallelize the render cache by subdividing the screen into a number of tiles. A
random permutation of the list of tiles could be distributed over the processors, with
each renderer managing its set of tiles independently from all other renderers. Alterna-
tively, a global list of tiles could be maintained with each processor choosing the tile
with the highest priority whenever it needs a new task to work on. While the latter op-
tion may provide better (dynamic) load balancing, we have opted for the first solution.
Load balancing is achieved statically by ensuring that each processor has a sufficiently
large list of tiles. The reason for choosing a static load balancing scheme has to do
with memory management on the SGI Origin 3800, which is explained in more detail
in Section 2.3.

Each tile has associated with it a local point cloud and an image plane data struc-
ture. The work associated with a tile depends on whether or not camera movement
is detected. If the camera is moving, the point cloud is projected onto the tile’s local
image plane and the results are sent to the display thread for immediate display. No
new rays are traced, as this would slow down the system and the perceived smooth-
ness would be affected. This is at the cost of a degradation in image quality, which is
deemed more acceptable than a loss of interaction. It is also the only modification we
have applied to the render cache concept.

If there is no camera movement, a depth test is performed to select those rays that
would improve image quality most. Other heuristics such as an aging scheme applied
to the points in the point cloud also aid in selecting appropriate new rays. Newly traced
rays are both added to the point cloud and displayed on screen. The point cloud itself
does not need to be reprojected.

5

The renderers each loop over their allotted tiles, executing for each tile in turn the
following main components:

1. Clear tile Before points are reprojected, the tile image is cleared.

2. Add points Points that previously belonged to a neighboring tile but have been pro-
jected onto the current tile are added to the point cloud.

3. Project point cloud The point cloud is projected onto the tile image. Points that
project outside the current tile are temporarily buffered in a data structure that is
periodically communicated to the relevant neighboring tiles.

4. Depth test A depth test is performed on the tile image to determine depth disconti-
nuities. This is then used to select new rays to trace.

5. Trace rays The rays selected by the depth test function, are traced and the results
added to the local point cloud.

6. Display tile The resulting tile is communicated to the display thread. This function
also performs hole-filling to improve the image’s visual appearance.

If camera movement has occurred since a tile was last visited, items 1, 2, 3 and 6 in
this list are executed for that tile. If the camera was stationary, items 1, 2, 3 and 6 are
executed. The algorithm is graphically depicted in Figure 2.2

While tiles can be processed largely independently, there are circumstances when
interaction between tiles is necessary. This occurs for instance when a point in one
tile’s point cloud projects to a different tile (due to camera movement). In that case,
the point is removed from the local point cloud and is inserted into the point cloud
associated with the tile to which it projects. The more tiles there are, the more often
this would occur. This conflicts with the goal of having many tiles for load balancing
purposes. In addition, having fewer tiles that are larger causes tile boundaries to be
more visible.

As each renderer produces pixels that need to be collated into an image for display
on screen, there is still a display process. This display thread only displays pixels
and reads the keyboard for user input. Displaying an image is achieved by reading an
array of pixels that represents the entire image, and sending this array to the display
hardware using OpenGL. When renderers produce pixels, they are buffered in a local
data structure, until a sufficient number of pixels has been accumulated for a write into
the global array of pixels. This buffering process ensures that memory contention is
limited for larger image sizes.

Finally, the algorithm shows similarities with the concept of frameless rendering,
in the sense that tiles are updated independently from the display process. If the size of
the tiles is small with respect to the image size, the visual effect is like that of frameless
rendering. The larger the tile size is chosen, the more the image updating process starts
to look like a distributed version of the render cache.

6

cache of
colored 3D

points

tile
loop over local list of tiles

if camera has moved
clear tile
add points
project cloud

else
add points
depth test
trace rays

display (smoothed) tile

Renderer 3

cache of
colored 3D

points

tile

cache of
colored 3D

points

tile

cache of
colored 3D

points

tile

cache of
colored 3D

points

tile
loop over local list of tiles

if camera has moved
clear tile
add points
project cloud

else
add points
depth test
trace rays

display (smoothed) tile

Renderer 2

cache of
colored 3D

points

tile

cache of
colored 3D

points

tile

cache of
colored 3D

points

tile

cache of
colored 3D

points

tile
loop over local list of tiles

if camera has moved
clear tile
add points
project cloud

else
add points
depth test
trace rays

display (smoothed) tile

Renderer 1

cache of
colored 3D

points

tile

cache of
colored 3D

points

tile

cache of
colored 3D

points

tile

display pixels

front end CPU

loop display

Figure 2.2: The parallel render cache algorithm.

7

2.3 Implementation details

The parallel render cache algorithm is implemented on a 32 processor SGI Origin 3800.
While this machine has a 16 GB shared address space, the memory is physically dis-
tributed over a total of eight nodes. Each node features four 400 MHz R12k processors
and one 2 GB block of memory. In addition each processor has an 8 MB secondary
cache. Memory access times are determined by the distance between the processor and
the memory that needs to be read or written. The local cache is fastest, followed by
the memory associated with a processor’s node. If a data item is located at a different
node, fetching it may incur a substantial performance penalty.

A second issue to be addressed is that the SGI Origin 3800 may relocate a rendering
process with a different processor each time a system call is performed. Whenever this
happens, the data that used to be in the local cache is no longer locally available. Cache
performance can thus be severely reduced by migrating processes.

These issues can be avoided on the SGI Origin 3800 by actively placing memory
near the processes and disallowing process migration. This can, for example, be ac-
complished using the dplace library or the mmap system call. Associated with each
tile in the parallel render cache is a local point cloud data structure and an image data
structure which are mapped as close as possible to the process that uses it. Such mem-
ory mapping assures that if a cache miss occurs for any of these data structures, the
performance penalty will be limited to fetching a data item that is in local memory.
As argued above, this is much cheaper than fetching data from remote nodes. For this
reason, using a global list of tiles as mentioned in the previous section is less efficient
than distributing tiles statically over the available processors.

Carefully choreographing the mapping of processes to processors and their data
structures to local memory enhances the algorithm’s performance. Cache performance
is improved and the number of data fetches from remote locations is minimized.

2.4 Scalability measures

The main loops of the renderers consist of a number of distinct steps. During each
iteration a subset of these steps is executed dependent on whether camera movement
has occurred or not (see Section 2.2). Standard speed-up measurements would under
these circumstances produce unreliable results, since the measured speed-up would
depend on how often the user moves the camera. The user cannot be expected to move
the camera in exactly the same way for each measurement.

For this reason each of the steps making up the complete algorithm are measured
separately. To assess scalability, the time to execute each step is measured, summed
over all invocations and processors and subsequently divided by the number of invoca-
tions and processors. The result is expressed in events per second per processor, which
for a scalable system should be independent of the number of processors employed.
Hence, using more processors would then not alter the measurements. In case this
measure varies with processor count, scalability is affected.

If the number of events per second per processor drops when adding processors,
sublinear scalability is measured, whereas an increase indicates super-linear speed-up

8

Figure 2.3: Test scenes. The teapot (top) consists of 32 bezier patches, while the room
scene consists of 846,563 primitives and 80 point light sources.

for the measured function. Also note that the smaller the number, the more costly
the operation will be. Using this measure provides better insight into the behavior
of the various parts of the algorithm than a standard scalability computation would
give, especially since only a subset of the components of the render cache algorithm is
executed during each iteration.

2.5 Results

Our implementation uses the original render cache code of Walter et al [25]1. Two
test scenes were used: a teapot with 32 bezier patches2 and one point light source, and
a room scene with 846,563 geometric primitives and area light sources approximated
by 80 point light sources (Figure 2.3). For the teapot scene, the renderer is limited
by the point reprojection algorithm, while for the room scene, tracing new rays is the
slowest part of the algorithm. The latter scene is of typical complexity in architectural
applications and usually cannot be interactively manipulated.

In the following subsection, the different components making up the parallel render
cache are evaluated (Section 2.5.1), the performance as function of task size is assessed
(Section 2.5.2) and the parallel render cache is compared with other methods to speed
up interactive ray tracing (Section 2.5.3).

2.5.1 Parallel render cache evaluation

The results of rendering the teapot and room models on different numbers of processors
at a resolution of 5122 and 10242 pixels are depicted in Figures 2.4 and 2.5.

1The original code has since been improved (Walter, personal communication) but we have not ported
that improved code. However, we expect that any improvements to the serial code would transfer to our
parallel version since the serial code runs essentially as a black box.

2These bezier patches are rendered directly using the intersection algorithm from Parker et. al [17].

9

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Processors

E
ve

nt
s/

pr
oc

es
so

r/
se

co
nd Clear tiles

Add points
Project cloud
Depth test
Trace rays
Display tile

Teapot model (512x512 pixels)

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Processors

E
ve

nt
s/

pr
oc

es
so

r/
se

co
nd

Clear tiles
Add points
Project cloud
Depth test
Trace rays
Display tile

Teapot model (1024x1024 pixels)

Figure 2.4: Scalability of the render cache components for the teapot scene rendered
at 5122 pixels (left) and 10242 pixels (right). Negative slopes indicate sub-linear scal-
ability, whereas horizontal lines show linear speed-ups.

While most of the components making up the algorithm show horizontal lines in
these graphs, meaning that they scale well, the “Clear tiles” and “Add point” compo-
nents show non-linear behavior. Clearing tiles is a very cheap operation which appears
to become cheaper if more processors are used. Because more processors result in each
processor having to process fewer tiles, this super-linear behavior may be explained by
better cache performance. This effect is less pronounced for the 10242 pixel render-
ings, which also points to a cache performance issue as here each processor handles
more data.

The “Add point” function scales sub-linearly with the number of processors. Be-
cause the total number of tiles was kept constant between runs, this cannot be explained
by assuming that different numbers of points project outside their own tile and thus
have to be added to neighboring tiles. However, with more processors there is an in-
creased probability that a neighboring tile belongs to a different processor and may
therefore reside in memory which is located elsewhere in the machine. Thus projecting
a point outside the tile that it used to belong to, may become more expensive for larger
numbers of processors. This issue is addressed in the following section.

Note also that despite the poor scalability of “Add points”, in absolute terms its
cost is rather low, especially for the room model. Hence, the algorithm is bounded by
components that scale well (they produce more or less horizontal lines in plots) and
therefore the whole distributed render cache algorithm scales well, at least up to 31
processors (see also Section 2.5.3). In addition, the display of the results is completely
decoupled from the renderers which produce new results and therefore the screen is
updated at a rate that is significantly higher than rays can be traced and is also much
higher than points can be reprojected. This three-tier system of producing new rays at
a low frequency, projecting existing points at an intermediate frequency and display-

10

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7
x 10

4

Processors

E
ve

nt
s/

pr
oc

es
so

r/
se

co
nd

Clear tiles
Add points
Project cloud
Depth test
Trace rays
Display tile

Room model (512x512 pixels)

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8
x 10

4

Processors

E
ve

nt
s/

pr
oc

es
so

r/
se

co
nd

Clear tiles
Add points
Project cloud
Depth test
Trace rays
Display tile

Room model (1024x1024 pixels)

Figure 2.5: Scalability for the room scene, rendered at 5122 pixels (left) and 10242

pixels (right). Horizontal lines indicate linear scalability, whereas a fall-off means
sub-linear scalability.

ing the results at a high frequency (on the Origin 3800 at a rate of around 290 frames
per second for 5122 images and 75 frames per second for 10242 images, regardless
of number of renderers and scene complexity) ensures a smooth display which is per-
ceived as interactive, even if new rays are produced at a rate that would not normally
allow interactivity.

By abandoning ray tracing altogether during camera movement, the system shows
desirable behavior even when fewer than 31 processors are used. For both the room
scene and the teapot model, the camera can move smoothly if 4 or more processors
are used. During camera movement, the scene deteriorates because no new rays are
produced and holes in the point cloud may become visible. During rapid camera move-
ment, tile boundaries may become temporarily visible. After the camera has stopped
moving, these artifacts disappear at a rate that is linear in the number of processors em-
ployed. We believe that maintaining fluid motion is more important than the temporary
introduction of some artifacts, which is why the distributed render cache is organized
as described above.

For those who would prefer a more accurate display at the cost of a slower sys-
tem response, it would be possible to continue tracing rays during camera movement.
Although the render cache then behaves differently, the scalability of the separate com-
ponents, as given in Figures 2.4 and 2.5, would not change. However, the fluidity of
camera movement is destroyed by an amount dependent on scene complexity.

2.5.2 Task size

In section 2.2 it was argued that the task size, i.e. the size of the tiles, is an impor-
tant parameter which defines both speed and the occurrence of visual artifacts. The
larger the task size, the better artifacts become visible. However, at the same time,

11

32 64 96 128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Task size

E
ve

nt
s/

pr
oc

es
so

r/
se

co
nd

Clear tiles
Add points
Project cloud
Depth test
Trace rays
Display tile

Room model (1024 x 1024 pixels)

32 64 96 128
0

1

2

3

4

5

6

7
x 10

4

Task size

E
ve

nt
s/

pr
oc

es
so

r/
se

co
nd

Clear tiles
Add points
Project cloud
Depth test
Trace rays
Display tile

Teapot model (1024 x 1024 pixels)

Figure 2.6: Scalability for the room model (left) and teapot scene (right) as function
of tile size (322, 642 and 1282 pixels per tile). The image size is 10242 pixels and for
these measurements 31 processors were used. These graphs should be interpreted the
same as those in Figures 2.4 and 2.5.

the reprojections that cross tile-boundaries are less likely to occur, resulting in higher
performance. In Figure 2.6 the scalability of the parallel render cache components as
function of task size is depicted. Task sizes range from 322 pixels to 1282 pixels and
the measurements were all obtained using 31 processors on 10242 images. Larger tile
sizes are thus impossible, as the total number of tasks would become smaller than the
number of processors. Task sizes smaller than 322 pixels resulted in unreasonably slow
performance and were therefore left out of the assessment.

As in the previous section, the “Add points” and “Clear tile” components show
interesting behavior. As expected, for larger tasks, the “Add points” function becomes
cheaper. This is because the total length of the tile boundaries diminishes for larger
task sizes, and so the probability of reprojections occurring across tile boundaries is
smaller.

The “Clear tile” component also becomes less expensive for larger tiles. Here,
we suspect that resetting one large block of memory is less expensive than resetting a
number of smaller blocks of memory.

Although Figure 2.6 suggests that choosing the largest task size as possible would
be appropriate, the artifacts visible for large tiles are more unsettling than for smaller
task sizes. Hence, for all other experiments presented in this paper, a task size of 322

pixels is used, which is based on an assessment of both artifacts and performance.

2.5.3 Comparison with other speed-up mechanisms

In this section, the parallel render cache is compared with other state-of-the-art render-
ing techniques. All make use of the interactive ray tracer of Parker et. al. [17], either
as a back-end or as the main algorithm. The comparison includes the original render

12

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5
x 10

6

Sa
m

pl
es

/s
ec

on
d

Processors

Brute force ray tracing
Frameless rendering
Serial render cache
Parallel render cache

Teapot model (1024x1024 pixels)

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

7

Processors

R
ep

ro
je

ct
io

ns
/s

ec
on

d

Parallel render cache
Serial render cache

Teapot model (1024x1024 pixels)

Figure 2.7: Samples per second (left) and point reprojections per second (right) for
the teapot model.

cache algorithm [25], the parallel render cache algorithm as described in this paper,
the interactive ray tracer (rtrt) without reprojection techniques and the interactive ray
tracer using the frameless rendering concept [17]. In the following we will refer to the
original render cache as “serial render cache” to distinguish it from our parallel render
cache implementation. All renderings were made using the teapot and room models
(Figure 2.3) at a resolution of 10242 pixels.

The measurements presented in this section consist of the number of new samples
produced per second by each of the systems and the number of points reprojected per
second (for the two render cache algorithms). These numbers are summed over all
processors and should therefore scale with the number of processors employed. The
results for the teapot model are given in Figure 2.7 and the results for the room model
are presented in Figure 2.8.

The graphs on the left of these figures show the number of samples generated per
second. All the lines are straight, indicating scalable behavior. In these plots, steeper
lines are the result of higher efficiency and therefore, the real-time ray tracer would be
most efficient, followed by the parallel render cache. The frameless rendering concept
looses efficiency because randomizing the order in which pixels are generated destroys
cache coherence. The parallel render cache does not suffer from this, since the screen
is tiled and tasks are based on tiles. The serial render cache appears to perform well
for complex scenes and poorly for simple scenes. For scenes that lack complexity, the
point reprojection front-end becomes the bottleneck, especially since the image size
chosen causes the point cloud to be quite large. Thus, the render cache front-end needs
to reproject a large number of points for each frame and so constitutes a bottleneck.

Although the parallel render cache does not produce as many new pixels as the
real-time ray tracer by itself does, this loss of efficiency is compensated by its ability
to reproject large numbers of points, as is shown in the plots on the right of Figures 2.7

13

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Sa
m

pl
es

/s
ec

on
d

Processors

Brute force ray tracing
Frameless rendering
Serial render cache
Parallel render cache

Room model (1024x1024 pixels)

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7

Processors

R
ep

ro
je

ct
io

ns
/s

ec
on

d

Parallel render cache
Serial render cache

Room model (1024x1024 pixels)

Figure 2.8: Samples per second (left) and point reprojections per second (right) for
the room scene.

and 2.8. The point reprojection component of the parallel render cache shows good
scalability, and therefore the goal of parallelizing the render cache algorithm is reached.
The point reprojection part of the serial render cache does not scale because it is serial
in nature.

2.6 Discussion

While it is true that processors get ever faster and multi-processor machines are now
capable of real-time ray tracing, scenes are getting more and more complex while at
the same time frame sizes still need to increase. Hence, Moore’s law is not likely to
allow interactive full-screen brute-force ray tracing of highly complex scenes anytime
soon.

Interactive manipulation of complex models is still not possible without the use of
sophisticated algorithms that can efficiently exploit temporal coherence. The render
cache is one such algorithm that can achieve this. However, for it not to become a
bottleneck itself, the render cache functionality needs to be distributed over the proces-
sors that produce new samples. The resulting algorithm, presented in this paper, shows
superior reprojection capabilities that enables smooth camera movement, even in the
case where the available processing power is much lower than would be required in a
brute force approach. It achieves this for scene complexities and image resolutions that
are not feasible using any of the other algorithms mentioned in the previous section.

While smoothness of movement is an important visual cue, our algorithm neces-
sarily produces other artifacts during camera motion. These artifacts are deemed less
disturbing than jerky motion and slow response times. The render cache attempts to fill
small holes after point reprojection. For larger holes, this may fail and unfilled pixels
may either be painted in a fixed color, or can be left unchanged from previous repro-

14

jections. Either approach causes artifacts inherent to the algorithm and is present both
in the original render cache and in our parallel implementation of it.

The parallel render cache produces additional artifacts due to the tiling scheme
employed. During camera movement, tile boundaries may temporarily become visible,
because there is some latency between points being reprojected from neighboring tiles
and this reprojection becoming visible in the current tile. A further investigation to
minimize these artifacts is in order, which we reserve for future work. Currently, the
parallel render cache algorithm is well suited for navigation through highly complex
scenes to find appropriate camera positions.

It has been shown that even with a relatively modest number of processors, the
distributed render cache can produce smooth camera movement at resolutions typi-
cally sixteen times higher than the original render cache. The system as presented
here scales well up to 31 processors. Its linear behavior suggests that improved perfor-
mance is likely beyond 31 processors, although if this many processors are available, it
would probably become sensible to devote the extra processing power to produce more
samples, rather than increase the speed of reprojection.

15

3 Animation

A fully optimized ray tracer which allows interactive walk-throughs is attractive over
other interactive rendering algorithms because it allows a large set of effects to be
rendered which are more difficult or even impossible to obtain using graphics hardware.
In addition, ray tracing scales sub-linearly in the number of objects due to the use
of spatial subdivisions. It also scales sub-linearly in the number of pixels rendered,
provided cache coherency can be exploited fully.

To make interactive ray tracing more attractive, we have looked into ways to en-
able objects to be manipulated in real-time ([20], reproduced with permission in Ap-
pendix A). In the following we assume that animation paths are not known prior to the
rendering, and so updates to the scene need to be achieved in real-time with as little
overhead as possible. In addition it is important that the effect of time-varying scenes
on the performance of the renderer is as small as possible.

Changing the coordinates of an object in real-time is not particularly difficult to
achieve, so we will not address this issue in any detail. However, an object’s change
in location, size or rotation does imply that after the transformation, the object may
occupy a different portion of space. In the absence of a spatial subdivision to speed up
the intersection tests, this would not constitute a problem.

However, the current speed of the hardware, combined with the number of compu-
tations required to ray trace an image, does not allow us to do away with spatial subdi-
visions altogether. Additionally, spatial subdivisions are usually built as a pre-process
to rendering. The cost of building a spatial subdivision is not negligible. Hence, spatial
subdivisions are required to obtain interactive frame-rates, but at the same time they
are not flexible enough to accommodate time-varying data.

In this section we describe a simple adaptation to both grid and octree spatial sub-
divisions which caters for a small number of animated objects. These objects can either
be animated according to pre-defined motion splines or they can be picked up by the
user and placed elsewhere in the scene. Animating all objects at the same time in a com-
plex scene is not yet possible. It would require rebuilding the entire spatial subdivision
for each frame and this is too costly to achieve using current technology. Focusing on
just a small number of objects to be animated/manipulated allows the design of spatial
subdivisions which can be incrementally updated after each frame.

In the following sub-sections the basic idea is explained (Section 3.1) and results
are shown (Section 3.2). We would also like to refer to Appendix A which includes a
full publication regarding this subject. The results presented in this chapter are obtained
using an SGI Origin 3800, while appendix A contains older results using an SGI Origin

16

2000.

3.1 Algorithm

In this section modifications to grid and octree spatial subdivisions are discussed. The
octree is a hierarchical extension to the grid. We assume the reader is familiar with
these spatial subdivisions [1, 5, 7, 9, 11, 13, 15, 16, 24, 26].

Grid spatial subdivisions for static scenes, without any modifications, are already
useful for animated scenes, as traversal costs are low and insertion and deletion of
objects is reasonably straightforward. Insertion and deletion are considered basic op-
erations necessary for the animation of objects. The general approach is to remove an
object from the spatial subdivision, modify its coordinates and the re-insert the object
into the acceleration structure. Insertion is usually accomplished by mapping the axis-
aligned bounding box of an object to the voxels of the grid. The object is inserted into
all voxels that overlap with this bounding box. Deletion can be achieved in a similar
way.

However, when an object moves outside the extent of the spatial subdivision, the
acceleration structure would normally have to be rebuilt. As this is too expensive to
perform repeatedly, we propose to logically replicate the grid over space. If an object
exceeds the bounds of the grid, the object wraps around before re-insertion. Ray traver-
sal then also wraps around the grid when a boundary is reached. In order to provide
a stopping criterion for ray traversal, a logical bounding box is maintained which con-
tains all objects, including the ones that have crossed the original perimeter. As this
scheme does not require grid re-computation whenever an object moves far away, the
cost of maintaining the spatial subdivision will be substantially lower. On the other
hand, because rays now may have to wrap around, more voxels may have to be tra-
versed per ray, which will slightly increase ray traversal time.

During a pre-processing step, the grid is built as usual. We will call the bounding
box of the entire scene at start-up the ’physical bounding box’. If during the animation
an object moves outside the physical bounding box, either because it is placed by the
user in a new location, or its programmed path takes it outside, the logical bounding
box is extended to enclose all objects. Initially, the logical bounding box is equal
to the physical bounding box. Insertion of an object which lies outside the physical
bounding box is accomplished by wrapping the object around within the physical grid,
as depicted in Figure 3.1 (left).

As the logical bounding box may be larger than the physical bounding box, ray
traversal now starts at the extended bounding box and ends if an intersection is found
or if the ray leaves the logical bounding box. In the example in Figure 3.1 (right), the
ray pointing to the sphere starts within a logical voxel, voxel (0, -2), which is mapped to
physical voxel (0, 2). The logical coordinates of the sphere are checked and found to be
outside of the currently traversed voxel and thus no intersection test is necessary. The
ray then progresses to physical voxel (1, 2). For the same reason, no intersection with
the sphere is computed again. Traversal then continues until the sphere is intersected
in logical voxel (4, 2), which maps to physical voxel (0, 2).

Objects that are outside the physical grid are tagged, so that in the above example,

17

Logical bounding box
Physical bounding box

1 320

0

1 320

1

3

2

1

0

3

2

Figure 3.1: Grid insertion (left). The sphere has moved outside the physical grid,
now overlapping with voxels (4, 2) and (5, 2). Therefore, the object is inserted at the
location of the shaded voxels. The logical bounding box is extended to include the
newly moved object. Right: ray traversal through extended grid. The solid lines are the
actual objects whereas the dashed lines indicate voxels which contain objects whose
actual extents are not contained in that voxel.

when the ray aimed at the triangle enters voxels (0, 2) and (1, 2), the sphere does not
have to be intersected. Similarly, when the ray is outside the physical grid, objects
that are within the physical grid need not be intersected. As most objects will initially
lie within the physical bounds, and only a few objects typically move away from their
original positions, this scheme speeds up traversal considerably for parts of the ray that
are outside the physical bounding box.

When the logical bounding box becomes much larger than the physical bounding
box, there is a tradeoff between traversal speed (which deteriorates for large logical
bounding boxes) and the cost of rebuilding the grid. In our implementation, the grid
is rebuilt when the length of the diagonals of the physical and logical bounding boxes
differ by a factor of two. This heuristic aims to provide a trade-off between traversal
speed and the frequency with which the spatial subdivision needs to be re-generated.

Hence, there is a hierarchy of operations that can be performed on grids. For small
to moderate expansions of the scene, wrapping both rays and objects is relatively quick
without incurring too high a traversal cost. For larger expansions, rebuilding the grid
will become a more viable option.

This grid implementation shares the advantages of simplicity and cheap traversal
with commonly used grid implementations. However, it adds the possibility of increas-
ing the size of the scene without having to completely rebuild the grid every time there
is a small change in scene extent.

The cost of deleting and inserting a single object is not constant and depends largely
on the size of the object relative to the size of the scene. The size of an object relative to
each voxel in a grid influences how many voxels will contain that object. This in turn
negatively affects insertion and deletion times. Hence, it would make sense to find a

18

spatial subdivision whereby the voxels can have different sizes. If this is accomplished,
then insertion and deletion of objects can be made independent of their sizes and can
therefore be executed in constant time. Such spatial subdivisions are not new and are
known as hierarchical spatial subdivisions. Octrees, bintrees and hierarchical grids
are all examples of hierarchical spatial subdivisions. However, normally such spatial
subdivisions store all their objects in leaf nodes and would therefore still incur non-
constant insertion and deletion costs. We extend the use of hierarchical grids in such
a way that objects can also reside in intermediary nodes or even in the root node for
objects that are nearly as big as the entire scene.

Because such a structure should also be able to deal with expanding scenes, our
efforts were directed towards constructing a hierarchy of grids (similar to Sung [24]),
thereby extending the functionality of the grid structure presented in the previous sec-
tion. Effectively, the proposed method constitutes a balanced octree.

Object insertion now proceeds similarly to grid insertion, except that the grid level
needs to be determined before insertion. This is accomplished by comparing the size
of the object in relation to the size of the scene. A simple heuristic is to determine the
grid level from the diagonals of the two bounding boxes. Specifically, the length of the
grid’s diagonal is divided by the length of the object’s diagonal, the result determining
the grid level. Insertion and deletion progresses as explained above.

The gain of better control over insertion time is offset by a slightly more compli-
cated traversal algorithm. Hierarchical grid traversal is effectively the same as grid
traversal with the following modifications. Traversal always starts at a leaf node which
may first be mapped to a physical leaf node as described earlier in this section. The ray
is intersected with this voxel and all its parents until the root node is reached. This is
necessary because objects at all levels in the hierarchy may occupy the same space as
the currently traversed leaf node. If an intersection is found within the space of the leaf
node, then traversal is finished. If not, the next leaf node is selected and the process is
repeated.

This traversal scheme is wasteful because the same parent nodes may be repeatedly
traversed for the same ray. To combat this problem, note that common ancestors of the
current leaf node and the previously intersected leaf node, need not be traversed again
(Figure 3.2). If the ray direction is positive, the current voxel’s number can be used to
derive the number of levels to go up in the tree to find the common ancestor between
the current and the previously visited voxel. For negative ray directions, the previously
visited voxel’s number is used instead. Finding the common ancestor is achieved using
simple bit manipulation, as detailed in Figure 3.3.

As the highest levels of the grid may not contain any objects, ascending all the
way to the highest level in the grid is not always necessary. Ascending the tree for a
particular leaf node can stop when the largest voxel containing objects is visited.

This hierarchical grid structure has the following features. The traversal is only
marginally more complex than standard grid traversal. In addition, wrapping of objects
in the face of expanding scenes is still possible. If all objects are the same size, this
algorithm effectively defaults to grid traversal. Insertion and deletion times are much
better controlled than for the interactive grid1.

1Note that this also obviates the need for mailbox systems to avoid redundant intersection tests.

19

7
Lowest level grid indices

Grid
Index

Levels between leaf and previously
checked common ancestor

60 1 2 3 4 5

0
1
2
3
4
5 1

2
1

3

6
7

4 (root)
1
2
1

Figure 3.2: Hierarchical grid traversal. Assuming that ray traversal starts at node 0 and
goes in positive direction, then after each step, the common ancestor is found n levels
above the leaf node as indicated in the table.

bitmask = (raydir_x > 0) ? x : x + 1
forall levels in hierarchical grid
{
cell = hgrid[level][x>>level][y>>level][z>>level]
forall objects in cell

intersect(ray, object)
if (bitmask & 1)

return
bitmask >>= 1

}

Figure 3.3: Hierarchical grid traversal algorithm in C-like pseudo-code. The bitmask
is set assuming that the last step was along the x-axis.

3.2 Results

The grid and hierarchical grid spatial subdivisions were implemented using an interac-
tive ray tracer [17], which runs on an SGI Origin 3800 with 32 processors and 16GB
of main memory2. Each processor is an R12k running at 400Mhz and manages an
8MB secondary cache. We have chosen to use 30 processors for rendering and one
extra thread to take care of user input, displaying the frames, and also for updating and
rebuilding the spatial subdivision when necessary (one processor remained unused by
our application to allow for system processes to run smoothly). The reason to include
the scene update routines with the display thread is that querying the keyboard and
displaying the images takes very little time. The remainder of the time to calculate
a frame could therefore easily be spent animating objects. In addition, it is important
that the scene updates are completed within the time to compute a new frame, as longer
update times would either cause delays or result in jerky movement of objects. As the
frame rate depends on both the scene complexity and the number of processors that
participate in the calculation, the time to update the scene is dependent on both of these
parameters.

For evaluation purposes, two test scenes were used. In each scene, a number of
2Note that the original work, presented in Appendix A, reported results obtained on a slower Origin 2000.

20

objects were animated using pre-programmed motion paths. The scenes as they are at
start-up are depicted in Figure A.5 (top, Appendix A). An example frame taken during
the animation is given for each scene in Figure A.5 (bottom, Appendix A). All images
were rendered at a resolution of 5122 pixels.

3.2.1 Traversal performance - static scenes

The performance penalty incurred by the new grid and hierarchical grid implementa-
tions are assessed by comparing these with a standard grid implementation. The stan-
dard grid data structure consists of a single array of object pointers. This design allows
better cache efficiency on the SGI Origin series. Finally, we have also implemented
a hierarchical grid with a higher branching factor. Instead of subdividing a voxel into
eight children, here nodes are split into 64 children (4 along each axis).

From here on we will refer to the new grid implementation as ‘interactive grid’ to
distinguish between the two grid traversal algorithms. As all these spatial subdivision
methods have a user defined parameter to set the resolution (voxels along one axis
and maximum number of grid levels, respectively), various settings are evaluated. The
overall performance is given in Figure 3.4 and is measured in frames per second.

0 10 20 30 40 50 60
2

4

6

8

10

12

14

16

18

20

Grid size

Fr
am

er
at

e
(f

ra
m

es
/s

ec
on

d)

Sphereflake model

Grid

Interactive grid

Octree (high)
branch factor)

Octree

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

Grid size

Fr
am

er
at

e
(f

ra
m

es
/s

ec
on

d)

Grid

Interactive grid

Octree

Octree (high
branch factor)

Triangles model

Figure 3.4: Performance (in frames per second) for the grid, the interactive grid and
the hierarchical grids for two static scenes.

The extra flexibility gained by both the interactive grid and hierarchical grid imple-
mentations results in a somewhat slower frame rate. This is according to expectation,
as the traversal algorithm is a little more complex and the Origin’s cache structure can-
not be exploited as well with either of the new grid structures. The graphs in Figure 3.4
should be compared to our previous results given in Figure A.3 in Appendix A. For
the hierarchical grid with the higher branching factor, the observed frame rates are very
similar to the hierarchical grid.

21

3.2.2 Object update rate - dynamic scenes

The object update rates were slightly better for the sphereflake and triangle scenes,
because the size differences between the objects matches this acceleration structure
better than both the interactive grid and the hierarchical grid.

The non-zero cost of updating the scene effectively limits the number of objects that
can be animated within the time-span of a single frame. However, for both scenes, this
limit was not reached. For each of these tests, the hierarchical grid is more efficiently
updated than the interactive grid, which confirms its usefulness.

The size difference between different objects should cause the update efficiency to
be variable for the interactive grid, while remaining relatively constant for the hierar-
chical grid. In order to demonstrate this effect, both the ground plane and one of the
triangles in the triangle scene was interactively repositioned during rendering. Simi-
larly, in the sphereflake scene one of the large spheres and one of the small spheres
were interactively manipulated. The update rates for different size parameters for both
the interactive grid and the hierarchical grid, are presented in Figure 3.5. Comparing
the grid size of 16 for the interactive grid with the size parameter of 4 for the interac-
tive grid in this figure, shows that for similar numbers of voxels (at the deepest level
of the hierarchical grid) along each axis, the update rate varies much more dependent
on object size for the interactive grid than for the hierarchical grid. Hence, the hierar-
chical grid copes much better with objects of different sizes than the interactive grid.
Dependent on the number of voxels in the grid, there is one to two orders of magnitude
difference between inserting a large and a small object. For larger grid sizes, the update
time for the ground plane of the triangles scene is roughly half a frame. This leads to
visible artifacts when using the interactive grid, as during the update the processors that
are rendering the next frame temporarily cannot intersect this object (it is simply taken
out of the spatial subdivision). In practice, the hierarchical grid implementation does
not show this disadvantage.

The time to rebuild a spatial subdivision from scratch is expected to be considerably
higher than the cost of re-inserting a small number of objects. For the triangles scene,
where 200 out of 201 objects were animated, the update rate was still a factor of two
faster than the cost of completely rebuilding the spatial subdivision. This was true for
both the interactive grid and the hierarchical grid. A factor of two was also found for
the animation of 81 spheres in the sphereflake scene. When animating only 9 objects
in this scene, the difference was a factor of 10 in favor of updating. We believe that
the performance difference between rebuilding the acceleration structure and updating
all objects is largely due to the cost of memory allocation, which occurs when rebuild-
ing. The cost of rebuilding the spatial subdivision will become prohibitive when much
larger scenes are rendered.

3.2.3 Traversal cost - dynamic scenes

In the case of expanding scenes, the logical bounding box will become larger than the
physical bounding box. The number of voxels that are traversed per ray will therefore
on average increase. This is the case in the triangles scene. The variation over time of

22

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Grid size

U
pd

at
e

ra
te

 (
H

z)
Triangles scene − interactive grid

Triangle

Groundplane

0 5 10 15 20 25 30 35
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Grid size

U
pd

at
e

ra
te

 (
H

z)

Triangles scene − hierarchical grid

Triangle

Groundplane

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7
x 10

4 Sphereflake model − interactive grid

Grid size

U
pd

at
e

ra
te

 (
H

z)

Small sphere

Large sphere

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6
x 10

4 Sphereflake model − hierarchical grid

Grid size

U
pd

at
e

ra
te

 (
H

z)

Small sphere

Large sphere

Figure 3.5: Update rate as function of grid size for the interactive and hierarchical
grids.. We compare the update rates for a small as well as a large object in both the
triangles model (top) and the sphereflake model (bottom).

the frame rate is given in Figure 3.6. In this example, the objects are first stationary. At
some point the animation starts and the frame rate drops because the scene immediately
starts expanding. For the sphereflake scene, the animated objects do not cause the scene
to expand, and therefore no drop in framerate is observed.

3.2.4 Animating clusters of objects

For many applications it will be necessary to animate clusters of objects in a coherent
manner. For example, if a teapot such as depicted in Figure 3.7, needs to be repo-
sitioned, it would not make sense to individually move each of its 25,000 individual
polygons. Encapsulating the teapot within its own spatial subdivision will improve
rendering time but will not improve insertion and deletion time, as after moving the
teapot, all its polygons would still require updating. Here, the use of instancing pro-
vides a good solution as only the transformation matrix specifying where the teapot
is positioned in space will need to be updated. For this example, updating the spatial
subdivision as well as the transformation matrix can be performed around 2400 times

23

0 100 200 300 400 500 600
0

5

10

15

20

25

Frame number

Fr
am

er
at

e
(H

z)

Interactive grid

Hierarchical grid

Spheres model

0 100 200 300 400 500 600
5

10

15

20

25

30

35

40

Frame number

Fr
am

er
at

e
(H

z)

Interactive grid

Hierarchical grid

Triangles model

Start animation

Figure 3.6: Framerate as function of time for the triangles scene and the sphereflake
scene. Note that the sphereflake scene does not expand over time and therefore starting
the animation does not appreciably affect the framerate.

per second. The benchmark for this scene resulted in a frame rate of 12.1 fps3.

Figure 3.7: Example of instancing. Moving the teapot requires a cheap update of a
transformation matrix.

Finally, Figure A.6 shows that interactively updating scenes using drag and drop
interaction is feasible.

3.3 Discussion

When objects are interactively manipulated and animated within a ray tracing appli-
cation, much of the work that is traditionally performed during a pre-processing step
becomes a limiting factor. Especially spatial subdivisions which are normally built
once before the computation starts, do not exhibit the flexibility that is required for an-
imation. The insertion and deletion costs can be both unpredictable and variable. We
have argued that for a small cost in traversal performance flexibility can be obtained

3Result obtained on a 32-node SGI Origin 2000.

24

and insertion and deletion of objects can be performed in a well controlled amount of
time.

By logically extending the (hierarchical) grids into space, these spatial subdivisions
deal with expanding scenes rather naturally. For modest expansions, this does not
significantly alter the frame rate. When the scenes expand a great deal, rebuilding the
entire spatial subdivision may become necessary. For large scenes this may involve a
temporary drop in frame rate. For applications where this is unacceptable, it would be
advisable to perform the rebuilding within a separate thread (rather than the display
thread) and use double buffering of the scene to minimize the impact on the rendering
threads.

25

4 Summary and discussion

In chapter 2 we have described algorithmic extensions to an interactive ray tracer that
can be employed to allow much larger images to be computed or have scenes of much
higher complexity rendered interactively. Point reprojection techniques do not allow
rays to be produced quicker, but rely on temporal coherence by reusing samples com-
puted for previous frames. For complex scenes, reprojection of existing results is much
faster than tracing new rays and so point reprojection allows for smooth movement be-
tween camera points for scenes that are too complex for other algorithms to smoothly
advance from one camera position to the next.

In chapter 3 extensions to spatial subdivisions were discussed. Normally, spatial
acceleration structures are built as a preprocess and are therefore not flexible enough
to accomodate interactively placed or moved objects. Extending grid and octree data
structures to enable user interaction with the scene interactively have a modest impact
on speed of rendering which is acceptable given their ability to allow objects to be
moved within and even outside the extent of the scene.

Interactive ray tracing is now feasible and for certain types of application, such as
interactive rendering of the visible female data set [18], it is a better choice than other
forms of rendering, including z-buffer techniques. With increasing available computa-
tional power, the range of applications for interactive ray tracing is likely to grow and
become possible on cheaper hardware.

26

Acknowledgements

We would like to thank Brian Smits, Chuck Hansen and Pete Shirley for their help,
support and involvement in the projects that are described in these course notes. In
addition, we thank Bruce Walter, Steven Parker and George Drettakis for their render
cache source code and John McCorquodale for valuable discussions regarding proces-
sor and memory placement issues. Thanks also to Springer Verlag for allowing us to
republish appendix A. This work was supported by NSF grants NSF/ACR, NSF/MRI
and by the DOE AVTC/VIEWS.

27

Appendix

Appendix A contains the following paper, which is reproduced with permission from
Springer Wien - New York:

Reinhard, E., Smits, B., Hansen, C., Dynamic Acceleration
Structures for Interactive Ray Tracing. in: Rendering Techniques
2000 (Proceedings of the Eurographics Workshop in Brno, Czech
Republic, 2000). pp299-306. Wien - New York: Springer. 2000

28

A Dynamic Acceleration
Structures for Interactive Ray
Tracing

Acceleration structures used for ray tracing have been designed and optimized for ef-
ficient traversal of static scenes. As it becomes feasible to do interactive ray tracing of
moving objects, new requirements are posed upon the acceleration structures. Dynamic
environments require rapid updates to the acceleration structures. In this paper we pro-
pose spatial subdivisions which allow insertion and deletion of objects in constant time
at an arbitrary position, allowing scenes to be interactively animated and modified.

A.1 Introduction

Recently, interactive ray tracing has become a reality [14, 17], allowing exploration of
scenes rendered with higher quality shading than with traditional interactive rendering
algorithms. A high frame-rate is obtained through parallelism, using a multiprocessor
shared memory machine. This approach has advantages over hardware accelerated
interactive systems in that a software-based ray tracer is more easily modified. One of
the problems with interactive ray tracing is that previous implementations only dealt
with static scenes or scenes with a small number of specially handled moving objects.
The reason for this limitation is that the acceleration structures used to make ray tracing
efficient rely on a significant amount of preprocessing to build. This effectively limits
the usefulness of interactive ray tracing to applications which allow changes in camera
position. The work presented in this paper is aimed at extending the functionality of
interactive ray tracing to include applications where objects need to be animated or
interactively manipulated.

When objects can freely move through the scene, either through user interaction, or
due to system-determined motion, it becomes necessary to adapt the acceleration meth-
ods to cope with changing geometry. Current spatial subdivisions tend to be highly op-
timized for efficient traversal, but are difficult to update quickly for changing geometry.
For static scenes this suffices, as the spatial subdivision is generally constructed during
a pre-processing step. However, in animated scenes pre-processed spatial subdivisions
may have to be recalculated for each change of the moving objects. One approach to

29

circumvent this issue is to use 4D radiance interpolants to speed-up ray traversal [2].
However, within this method the frame update rates depend on the type of scene ed-
its performed as well as the extent of camera movement. We will therefore focus on
adapting current spatial subdivision techniques to avoid these problems.

To animate objects while using a spatial subdivision, insertion and deletion costs
are not negligible, as these operations may have to be performed many times during
rendering. In this paper, spatial subdivisions are proposed which allow efficient ray
traversal as well as rapid insertion and deletion for scenes where the extent of the scene
grows over time.

The following section presents a brief overview of current spatial subdivision tech-
niques (Section A.2), followed by an explanation of our (hierarchical) grid modifica-
tions (Sections A.3 and A.4). A performance evaluation is given in Section A.5, while
conclusions are drawn in the final section.

A.2 Acceleration Structures for Ray Tracing

There has been a great deal of work done on acceleration structures for ray tracing [11].
However, little work has focused on ray tracing moving objects. Glassner presented an
approach for building acceleration structures for animation [10]. However, this ap-
proach does not work for environments without a priori knowledge of the animation
path for each object. In a survey of acceleration techniques, Gaede and Günther pro-
vide an overview of many spatial subdivisions, along with the requirements for various
applications [8]. The most important requirements for ray tracing are fast ray traversal
and adaptation to unevenly distributed data. Currently popular spatial subdivisions can
be broadly categorized into bounding volume hierarchies and voxel based structures.

Bounding volume hierarchies create a tree, with each object stored in a single node.
In theory, the tree structure allows O(log n) insertion and deletion, which may be fast
enough. However, to make the traversal efficient, the tree is augmented with extra
data, and occasionally flattened into an array representation [22], which enables fast
traversal but insertion or deletion incur a non-trivial cost. Another problem is that as
objects are inserted and deleted, the tree structure could become arbitrarily inefficient
unless some sort of rebalancing step is performed as well.

Voxel based structures are either grids [1, 7] or can be hierarchical in nature, such as
bintrees and octrees [9, 23]. The cost of building a spatial subdivision tends to be O(n)
in the number of objects. This is true for both grids and octrees. In addition, the cost
of inserting a single object may depend on its relative size. A large object generally
intersects many voxels, and therefore incurs a higher insertion cost than smaller objects.
This can be alleviated through the use of modified hierarchical grids, as explained in
Section A.4. The larger problem with spatial subdivision approaches is that the grid
structure is built within volume bounds that are fixed before construction. Although
insertion and deletion may be relatively fast for most objects, if an object is moved
outside the extent of the spatial subdivision, current structures would require a complete
rebuild. This problem is addressed in the next section.

30

A.3 Grids

Grid spatial subdivisions for static scenes, without any modifications, are already useful
for animated scenes, as traversal costs are low and insertion and deletion of objects is
reasonably straightforward. Insertion is usually accomplished by mapping the axis-
aligned bounding box of an object to the voxels of the grid. The object is inserted into
all voxels that overlap with this bounding box. Deletion can be achieved in a similar
way.

However, when an object moves outside the extent of the spatial subdivision, the
acceleration structure would normally have to be rebuilt. As this is too expensive to
perform repeatedly, we propose to logically replicate the grid over space. If an object
exceeds the bounds of the grid, the object wraps around before re-insertion. Ray traver-
sal then also wraps around the grid when a boundary is reached. In order to provide
a stopping criterion for ray traversal, a logical bounding box is maintained which con-
tains all objects, including the ones that have crossed the original perimeter. As this
scheme does not require grid re-computation whenever an object moves far away, the
cost of maintaining the spatial subdivision will be substantially lower. On the other
hand, because rays now may have to wrap around, more voxels may have to be tra-
versed per ray, which will slightly increase ray traversal time.

During a pre-processing step, the grid is built as usual. We will call the bounding
box of the entire scene at start-up the ’physical bounding box’. If during the animation
an object moves outside the physical bounding box, either because it is placed by the
user in a new location, or its programmed path takes it outside, the logical bounding
box is extended to enclose all objects. Initially, the logical bounding box is equal
to the physical bounding box. Insertion of an object which lies outside the physical
bounding box is accomplished by wrapping the object around within the physical grid,
as depicted in Figure A.1 (left).

As the logical bounding box may be larger than the physical bounding box, ray
traversal now starts at the extended bounding box and ends if an intersection is found
or if the ray leaves the logical bounding box. In the example in Figure A.1 (right), the
ray pointing to the sphere starts within a logical voxel, voxel (-2, 0), which is mapped to
physical voxel (0, 2). The logical coordinates of the sphere are checked and found to be
outside of the currently traversed voxel and thus no intersection test is necessary. The
ray then progresses to physical voxel (1, 2). For the same reason, no intersection with
the sphere is computed again. Traversal then continues until the sphere is intersected
in logical voxel (4, 2), which maps to physical voxel (0, 2).

Objects that are outside the physical grid are tagged, so that in the above example,
when the ray aimed at the triangle enters voxels (0, 2) and (1, 2), the sphere does not
have to be intersected. Similarly, when the ray is outside the physical grid, objects
that are within the physical grid need not be intersected. As most objects will initially
lie within the physical bounds, and only a few objects typically move away from their
original positions, this scheme speeds up traversal considerably for parts of the ray that
are outside the physical bounding box.

When the logical bounding box becomes much larger than the physical bounding
box, there is a tradeoff between traversal speed (which deteriorates for large logical
bounding boxes) and the cost of rebuilding the grid. In our implementation, the grid

31

Logical bounding box
Physical bounding box

1 320

0

1 320

1

3

2

1

0

3

2

Figure A.1: Grid insertion (left). The sphere has moved outside the physical grid,
now overlapping with voxels (4, 2) and (5, 2). Therefore, the object is inserted at the
location of the shaded voxels. The logical bounding box is extended to include the
newly moved object. Right: ray traversal through extended grid. The solid lines are the
actual objects whereas the dashed lines indicate voxels which contain objects whose
actual extents are not contained in that voxel.

is rebuilt when the length of the diagonals of the physical and logical bounding boxes
differ by a factor of two.

Hence, there is a hierarchy of operations that can be performed on grids. For small
to moderate expansions of the scene, wrapping both rays and objects is relatively quick
without incurring too high a traversal cost. For larger expansions, rebuilding the grid
will become a more viable option.

This grid implementation shares the advantages of simplicity and cheap traversal
with commonly used grid implementations. However, it adds the possibility of increas-
ing the size of the scene without having to completely rebuild the grid every time there
is a small change in scene extent. The cost of deleting and inserting a single object
is not constant and depends largely on the size of the object relative to the size of the
scene. This issue is addressed in the following section.

A.4 Hierarchical grids

As was noted in the previous section, the size of an object relative to each voxel in a
grid influences how many voxels will contain that object. This in turn negatively affects
insertion and deletion times. Hence, it would make sense to find a spatial subdivision
whereby the voxels can have different sizes. If this is accomplished, then insertion
and deletion of objects can be made independent of their sizes and can therefore be
executed in constant time. Such spatial subdivisions are not new and are known as hi-
erarchical spatial subdivisions. Octrees, bintrees and hierarchical grids are all examples
of hierarchical spatial subdivisions. However, normally such spatial subdivisions store

32

all their objects in leaf nodes and would therefore still incur non-constant insertion and
deletion costs. We extend the use of hierarchical grids in such a way that objects can
also reside in intermediary nodes or even in the root node for objects that are nearly as
big as the entire scene.

Because such a structure should also be able to deal with expanding scenes, our
efforts were directed towards constructing a hierarchy of grids (similar to Sung [24]),
thereby extending the functionality of the grid structure presented in the previous sec-
tion. Effectively, the proposed method constitutes a balanced octree.

Object insertion now proceeds similarly to grid insertion, except that the grid level
needs to be determined before insertion. This is accomplished by comparing the size
of the object in relation to the size of the scene. A simple heuristic is to determine the
grid level from the diagonals of the two bounding boxes. Specifically, the length of the
grid’s diagonal is divided by the length of the object’s diagonal, the result determining
the grid level. Insertion and deletion progresses as explained in the previous section.

The gain of constant time insertion is offset by a slightly more complicated traversal
algorithm. Hierarchical grid traversal is effectively the same as grid traversal with
the following modifications. Traversal always starts at a leaf node which may first
be mapped to a physical leaf node as described in the previous section. The ray is
intersected with this voxel and all its parents until the root node is reached. This is
necessary because objects at all levels in the hierarchy may occupy the same space as
the currently traversed leaf node. If an intersection is found within the space of the leaf
node, then traversal is finished. If not, the next leaf node is selected and the process is
repeated.

This traversal scheme is wasteful because the same parent nodes may be repeatedly
traversed for the same ray. To combat this problem, note that common ancestors of the
current leaf node and the previously intersected leaf node, need not be traversed again.
If the ray direction is positive, the current voxel’s number can be used to derive the
number of levels to go up in the tree to find the common ancestor between the current
and the previously visited voxel. For negative ray directions, the previously visited
voxel’s number is used instead. Finding the common ancestor is achieved using simple
bit manipulation, as detailed in Figure A.2.

bitmask = (raydir_x > 0) ? x : x + 1
forall levels in hierarchical grid
{
cell = hgrid[level][x>>level][y>>level][z>>level]
forall objects in cell

intersect(ray, object)
if (bitmask & 1)

return
bitmask >>= 1

}

Figure A.2: Hierarchical grid traversal algorithm in C-like pseudo-code. The bitmask
is set assuming that the last step was along the x-axis.

As the highest levels of the grid may not contain any objects, ascending all the
way to the highest level in the grid is not always necessary. Ascending the tree for a

33

particular leaf node can stop when the largest voxel containing objects is visited.
This hierarchical grid structure has the following features. The traversal is only

marginally more complex than standard grid traversal. In addition, wrapping of objects
in the face of expanding scenes is still possible. If all objects are the same size, this
algorithm effectively defaults to grid traversal. Insertion and deletion can be achieved
in constant time, as the number of voxels that each object overlaps is roughly constant1.

A.5 Evaluation

The grid and hierarchical grid spatial subdivisions were implemented using an inter-
active ray tracer [17], which runs on an SGI Origin 2000 with 32 processors. For
evaluation purposes, two test scenes were used. In each scene, a number of objects
were animated using pre-programmed motion paths. The scenes as they are at start-up
are depicted in Figure A.5 (top). An example frame taken during the animation is given
for each scene in Figure A.5 (bottom). All images were rendered on 30 processors at a
resolution of 5122 pixels.

To assess basic traversal speed, the new grid and hierarchical grid implementations
are compared with a bounding volume hierarchy. We also compared our algorithms
with a grid traversal algorithm which does not allow interactive updates. Its internal
data structure consists of a single array of object pointers, which improves cache effi-
ciency on the Origin 2000.

From here on we will refer to the new grid implementation as ‘interactive grid’ to
distinguish between the two grid traversal algorithms. As all these spatial subdivision
methods have a user defined parameter to set the resolution (voxels along one axis
and maximum number of grid levels, respectively), various settings are evaluated. The
overall performance is given in Figure A.3 and is measured in frames per second.

Sphereflake performance

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40
Grid size

Fr
am

es
 p

er
 s

ec
on

d

Grid
Interactive Grid
Hierarchical grid

Triangles performance

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40
Grid size

Fr
am

es
 p

er
 s

ec
on

d

Grid
Interactive Grid
Hierarchical Grid

Figure A.3: Performance (in frames per second) for the grid, the interactive grid and
the hierarchical grid for two static scenes. The bounding volume hierarchy achieves a
frame rate of 8.5 fps for the static sphereflake model and 16.4 fps for the static triangles
model.

1Note that this also obviates the need for mailbox systems to avoid redundant intersection tests.

34

The extra flexibility gained by both the interactive grid and hierarchical grid imple-
mentations results in a somewhat slower frame rate. This is according to expectation,
as the traversal algorithm is a little more complex and the Origin’s cache structure
cannot be exploited as well with either of the new grid structures. The graphs in Fig-
ure A.3 show that with respect to the grid implementation the efficiency reduction is
between 12% and 16% for the interactive grid and 21% and 25% for the hierarchical
grid. These performance losses are deemed acceptable since they result in far better
overall execution than dynamically reconstructing the original grid. For the sphere-
flake, all implementations are faster, for a range of grid sizes, than a bounding volume
hierarchy, which runs at 8.5 fps. For the triangles scene, the hierarchical grid performs
at 16.0 fps similarly to the bounding volume (16.4 fps), while grid and interactive grid
are faster.

The non-zero cost of updating the scene effectively limits the number of objects
that can be animated within the time-span of a single frame. However, for both scenes,
this limit was not reached. In the case where the frame rate was highest for the triangles
scene, updating all 200 triangles took less than 1/680th of a frame for the hierarchical
grid and 1/323th of a frame for the interactive grid. The sphereflake scene costs even
less to update, as fewer objects are animated. For each of these tests, the hierarchical
grid is more efficiently updated than the interactive grid, which confirms its usefulness.

The size difference between different objects should cause the update efficiency to
be variable for the interactive grid, while remaining relatively constant for the hierar-
chical grid. In order to demonstrate this effect, both the ground plane and one of the
triangles in the triangle scene was interactively repositioned during rendering. The up-
date rates for different size parameters for both the interactive grid and the hierarchical
grid, are presented in Figure A.4 (left). As expected, the performance of the hierarchi-
cal grid is relatively constant, although the size difference between ground plane and
triangle is considerable. The interactive grid does not cope with large objects very well
if these objects overlap with many voxels. Dependent on the number of voxels in the
grid, there is one to two orders of magnitude difference between inserting a large and a
small object. For larger grid sizes, the update time for the ground plane is roughly half
a frame. This leads to visible artifacts when using an interactive grid, as during the up-
date the processors that are rendering the next frame temporarily cannot intersect this
object (it is simply taken out of the spatial subdivision). In practice, the hierarchical
grid implementation does not show this disadvantage.

The time to rebuild a spatial subdivision from scratch is expected to be considerably
higher than the cost of re-inserting a small number of objects. For the triangles scene,
where 200 out of 201 objects were animated, the update rate was still a factor of two
faster than the cost of completely rebuilding the spatial subdivision. This was true for
both the interactive grid and the hierarchical grid. A factor of two was also found for
the animation of 81 spheres in the sphereflake scene. When animating only 9 objects
in this scene, the difference was a factor of 10 in favor of updating. We believe that the
performance difference between rebuilding the acceleration structure and updating all
objects is largely due to the cost of memory allocation, which occurs when rebuilding.

In addition to experiments involving grids and hierarchical grids with a branching
factor of two, tests were performed using a hierarchical grid with a higher branching
factor. Instead of subdividing a voxel into eight children, here nodes are split into 64

35

1

10

100

1000

10000

100000

0 5 10 15 20 25 30
Grid size

U
pd

at
e

ra
te

 (
H

z)

Plane (IGrid)
Triangle (IGrid)
Plane (HGrid)
Triangle (HGrid)

0

5

10

15

20

25

30

35

0 100 200 300 400 500
Frame #

Fr
am

e
ra

te
 (

H
z)

Hierarchical grid
Interactive grid

Rebuild

 Rebuild

Start animation

Figure A.4: Left: Update rate as function of (hierarchical) grid size. The plane is the
ground plane in the triangles scene and the triangle is one of the triangles in the same
scene. Right: Frame rate as function of time for the expanding triangle scene.

children (4 along each axis). The observed frame rates are very similar to the hierar-
chical grid. The object update rates were slightly better for the sphereflake and trian-
gle scenes, because the size differences between the objects matches this acceleration
structure better than both the interactive grid and the hierarchical grid.

In the case of expanding scenes, the logical bounding box will become larger than
the physical bounding box. The number of voxels that are traversed per ray will there-
fore on average increase. This is the case in the triangles scene2. The variation over
time of the frame rate is given in Figure A.4 (right). In this example, the objects are
first stationary. At some point the animation starts and the frame rate drops because
the scene immediately starts expanding. At some point the expansion is such that a
rebuild is warranted. The re-computed spatial subdivision now has a logical bounding
box which is identical to the (new) physical bounding box and therefore the number of
traversed voxels is reduced when compared with the situation just before the rebuild.
The total frame rate does not reach the frame rate at the start of the computation, be-
cause the objects are more spread out over space, resulting in larger voxels and more
intersection tests which do not yield an intersection point.

Finally, Figure A.6 shows that interactively updating scenes using drag and drop
interaction is feasible.

A.6 Conclusions

When objects are interactively manipulated and animated within a ray tracing appli-
cation, much of the work that is traditionally performed during a pre-processing step
becomes a limiting factor. Especially spatial subdivisions which are normally built
once before the computation starts, do not exhibit the flexibility that is required for an-
imation. The insertion and deletion costs can be both unpredictable and variable. We

2For this experiment, the ground plane of the triangles scene was reduced in size, allowing the rebuild to
occur after a smaller number of frames.

36

have argued that for a small cost in traversal performance flexibility can be obtained
and insertion and deletion of objects can be performed in constant time.

By logically extending the (hierarchical) grids into space, these spatial subdivisions
deal with expanding scenes rather naturally. For modest expansions, this does not
significantly alter the frame rate. When the scenes expand a great deal, rebuilding the
entire spatial subdivision may become necessary. For large scenes this may involve a
temporary drop in frame rate. For applications where this is unacceptable, it would be
advisable to perform the rebuilding within a separate thread (rather than the display
thread) and use double buffering to minimize the impact on the rendering threads.

Acknowledgements

Thanks to Pete Shirley and Steve Parker for their help and comments and to the anony-
mous reviewers for their helpful comments. This work was supported by NSF grants
CISE-CCR 97-20192, NSF-9977218 and NSF-9978099 and by the DOE Advanced
Visualization Technology Center.

37

Figure A.5: Test scenes before any objects moved (top) and during animation (bottom).

Figure A.6: Frames created during interactive manipulation.

38

Bibliography

[1] J. AMANATIDES AND A. WOO, A fast voxel traversal algorithm for ray tracing,
in Eurographics ’87, Elsevier Science Publishers, Amsterdam, North-Holland,
Aug. 1987, pp. 3–10.

[2] K. BALA, J. DORSEY, AND S. TELLER, Interactive ray traced scene editing
using ray segment tree, in Rendering Techniques ’99, D. Lischinski and G. W.
Larson, eds., Eurographics, Springer-Verlag Wien New York, 1999, pp. 31–44.

[3] , Radiance interpolants for accelerated bounded-error ray tracing, ACM
Transactions on Graphics, (1999).

[4] G. BISHOP, H. FUCHS, L. MCMILLAN, AND E. J. SCHER ZAGIER, Frameless
rendering: Double buffering considered harmful, in Proceedings of SIGGRAPH
’94 (Orlando, Florida, July 24–29, 1994), A. Glassner, ed., Computer Graphics
Proceedings, Annual Conference Series, ACM SIGGRAPH, ACM Press, July
1994, pp. 175–176. ISBN 0-89791-667-0.

[5] J. G. CLEARY AND G. WYVILL, Analysis of an algorithm for fast ray tracing
using uniform space subdivision, The Visual Computer, (1988), pp. 65–83.

[6] R. A. CROSS, Interactive realism for visualization using ray tracing, in Proceed-
ings Visualization ’95, 1995, pp. 19–25.

[7] A. FUJIMOTO, T. TANAKA, AND K. IWATA, ARTS: Accelerated ray tracing sys-
tem, IEEE Computer Graphics and Applications, 6 (1986), pp. 16–26.

[8] V. GAEDE AND O. GÜNTHER, Multidimensional access methods, ACM Com-
puting Surveys, 30 (1998), pp. 170–231.

[9] A. S. GLASSNER, Space subdivision for fast ray tracing, IEEE Computer Graph-
ics and Applications, 4 (1984), pp. 15–22.

[10] A. S. GLASSNER, Spacetime ray tracing for animation, IEEE Computer Graph-
ics and Applications, 8 (1988), pp. 60–70.

[11] A. S. GLASSNER, ed., An Introduction to Ray Tracing, Academic Press, San
Diego, 1989.

39

[12] G. W. LARSON AND M. SIMMONS, The holodeck ray cache: An interactive ren-
dering system for global illumination in non-diffuse environments, ACM Trans-
actions on Graphics, 18 (October 1999), pp. 361–368.

[13] J. D. MACDONALD AND K. S. BOOTH, Heuristics for ray tracing using space
subdivision, The Visual Computer, (1990), pp. 153–166.

[14] M. J. MUUSS, towards real-time ray-tracing of combinatorial solid geometric
models, in Proceedings of BRL-CAD Symposium, June 1995.

[15] K. NAKAMARU AND Y. OHNO, Breadth-first ray tracing utilizing uniform spa-
tial subdivision, IEEE Transactions on Visualization and Computer Graphics, 3
(1997), pp. 316–328.

[16] K. NEMOTO AND T. OMACHI, An adaptive subdivision by sliding boundary sur-
faces for fast ray tracing, in Proceedings of Graphics Interface ’86, M. Green,
ed., May 1986, pp. 43–48.

[17] S. PARKER, W. MARTIN, P.-P. SLOAN, P. SHIRLEY, B. SMITS, AND

C. HANSEN, Interactive ray tracing, in Symposium on Interactive 3D Computer
Graphics, April 1999.

[18] S. PARKER, M. PARKER, Y. LIVNAT, P.-P. SLOAN, C. HANSEN, AND

P. SHIRLEY, Interactive ray tracing for volume visualization, in IEEE Trans-
actions on Visualization and Computer Graphics, July-September 1999.

[19] E. REINHARD, P. SHIRLEY, AND C. HANSEN, Parallel point reprojection. Sub-
mitted to IEEE 2001 Symposium on Parallel and Large-Data Visualization and
Graphics.

[20] E. REINHARD, B. SMITS, AND C. HANSEN, Dynamic acceleration structures
for interactive ray tracing, in Proceedings of the 11th Eurographics Workshop on
Rendering, Brno, Czech Republic, June 2000, pp. 299–306.

[21] M. SIMMONS AND C. SÉQUIN, Tapestry: A dynamic mesh-based display rep-
resentation for interactive rendering, in Proceedings of the 11th Eurographics
Workshop on Rendering, Brno, Czech Republic, June 2000, pp. 329–340.

[22] B. SMITS, Efficiency issues for ray tracing, Journal of Graphics Tools, 3 (1998),
pp. 1–14.

[23] J. SPACKMAN AND P. WILLIS, The SMART navigation of a ray through an oct-
tree, Computers and Graphics, 15 (1991), pp. 185–194.

[24] K. SUNG, A DDA octree traversal algorithm for ray tracing, in Eurographics ’91,
W. Purgathofer, ed., North-Holland, sept 1991, pp. 73–85. European Computer
Graphics Conference and Exhibition; held in Vienna, Austria; 2-6 September
1991.

40

[25] B. WALTER, G. DRETTAKIS, AND S. PARKER, Interactive rendering using the
render cache, in Rendering Techniques ’99, D. Lischinski and G. W. Larson, eds.,
Eurographics, Springer-Verlag Wien New York, 1999, pp. 19–30.

[26] K.-Y. WHANG, J.-W. SONG, J.-W. CHANG, J.-Y. KIM, W.-S. CHO, C.-M.
PARK, AND I.-Y. SONG, Octree-r: An adaptive octree for efficient ray tracing,
IEEE Transactions on Visualization and Computer Graphics, 1 (1995), pp. 343–
349.

[27] E. S. ZAGIER, Defining and refining frameless rendering, Tech. Rep. TR97-008,
UNC-CS, July 1997.

41

